数学でつまずくのはなぜか (講談社現代新書)

  • 287人登録
  • 3.49評価
    • (12)
    • (30)
    • (53)
    • (5)
    • (0)
  • 31レビュー
著者 : 小島寛之
  • 講談社 (2008年1月18日発売)
  • Amazon.co.jp ・本 (240ページ)
  • / ISBN・EAN: 9784062879255

この本を読んでいる人は、こんな本も本棚に登録しています。

有効な左矢印 無効な左矢印
デール カーネギ...
ロバート キヨサ...
トニー・ブザン
マーク・ピーター...
有効な右矢印 無効な右矢印

数学でつまずくのはなぜか (講談社現代新書)の感想・レビュー・書評

  • いわるゆ文系人間が数学への興味をもったので読んでみた。一読しただけでは公式や規則に隠された哲学や思想を読み解くことで数学への興味が深まる。理解出来なかったところもあるので、繰り返し読んでいきたい。

  • 2008年刊行。
     著者は帝京大学経済学部経営学科准教授。

     数学、特に高校数学でつまずきそうなテーマや、その前提となる中学数学の基礎理念を掘り起こして解説する。
     じっくり読めば、得意な子も、苦手な子にも役立つと思う。高2の夏休みくらいにじっくり読み込んだらいいのでは…。

  • 学校教育における数学…。数学でつまずきまくった僕としては、「もっとこれ教え方どーにかならんの」と思ったことも多々あったろうと思う。
    そして本書にはそんな数学劣等生のために「どーにかする」方法をいくつも提示している。
    大人になった今読んでみると、ルールや公理やといった数学の負のイメージの束縛にがんじがらめだったのが、「考え方はひとつじゃない」という免罪符をもらえた気分だ。

    第2章「幾何でのつまずき」が特に興味深かった。
    「証明しろったって視覚的にどう見ても合同だろうがボケ」とあの頃なんど心のなかで問題文を罵倒したことか。
    しかし過去の偉大な数学者もこの公理系に対しておなじような罵倒を口にしていたと知ったときにはスカッとした。

    そうそう、「図形の性質」と「論証」というふたつの異なる側面があわさっているというのがあの頃わからなかった。
    「論証」がなぁ……まあ今でも論理的とは言えないから、ここで決定的につまずいたんだろう。数学に。

    筆者は数学嫌いの子供たちのために「公理系はRPG」と説く。はじめは5つの武器しか持っていないが、敵(問題)を倒す(証明)ことでレベルアップ、つまりその的も今度から武器として使えるようになる。そうして徐々にレベルを上げていく…と。

    あー、でもテレビゲームのほうが面白かったからなァ。だからゲーム三昧だったんだろうなァ。とかとか。

    あと「コオロギの鳴く回数」を関数にぶちこんで計算できるってのがおもしろかった。日常的に数学を使えるクレバー人間になりたひ。

  • 題名で買ってしまった1

    数学はルールだと思ってた。数式がそりゃそうだ(いわゆるアハ体験)にできるとは。面白いよ。

    そして、つまづく理由、わかる理由を説明できないと本当の教育にならないなーと、第4章~第5章を読み反省。

  • あー…こういう風に説明すればいいんだな、と随所で感じて、目からうろこだった。
    最後の章など、1回習っていないとちょっと理解しづらいかも、という部分もあったけれど、全体的にわかりやすかったと思う。微分のところとか特に。

  • で、なんでだっけ??

    子どものためにと思い、買ったんだったが、そろそろもう一度見ておきますかね。

  • 単に教え方を述べた本かと思いきや、最後の方はけっこう難解な理論へ。しかし無限というものを目にするたびに、写像というのはすごい概念だと思います。

  • 数学(算数)につまづいたのは、数学科にすすんでからのことなので、
    小中高の数学(算数)につまづいた覚えがない。

    だから、もしも娘が算数につまづいたらどうしようか?と
    思いながらこの本を読みました。

    小学生のつまづき、というよりは、
    中学生のつまづき、に
    「こう教えてみよう」という例が載っていて。

    参考になるかな?
    娘がつまづかないことが一番だけど。

  • 数学でつまずくのはなぜか。この答えは、数学教育のアプローチの仕方が悪いから。著者は塾講師であり、実際に手を動かし、ゲームを通じて理解させるという一見泥臭い手法で子供たちに数学の理解を促しているが、この手法が逐一面白い。読んでいて「おぉ。。。分かやすいぞ」と思わせるものばかりなのである。この本を読めば、中学、高校時代の時よりもはるかに数学を楽しむことができるんじゃないかと思う。

  •  個人的に面白かったのは、生態心理学の「アフォーダンス」の概念を数的能力に適用しようとしている点。人間の側に数学的世界という構築物があると捉えるのではなく、世界を構成する様々な事物の側に「数え上げられる」「数理的に表現できる」等の性質が備わっていて、それを探り出す力として数的能力というものを考えているようだ。
    数学そのものに数えることができるという能力があり、できない人はその数学が発している方法ではたまたま受容しにくいだけ。逆転の発想が素晴らしい。
    できないではなく、あなたのもっている受容方法にはむいていないだけ。そのポジティブな考え方が教育にとって意味があるのではないかと思う。
    特に論理に関するところや、数学基礎をどう考えるかなど、数学に関して子供が思いもしないところで躓いている時、その方法を自分で考えるよりもたしかな方法がもっとあるからまずはしっかり調べてからその子に対応する方が適切であるかもしれないと思った。

  • つまづくよね~。
    私は,高3のときの数Ⅲの演習課題に,夢中になって取り組んでいた自分に気づき,目覚めた。
    大学では「ヒルベルト空間上の有界線形作用素」について学ぶ。
    でも,もう忘れた。

  • 数学は「日常生活で役に立たない」し、「発想力が豊かな子を育てる」こともない。
    学校で学ぶ数学は、時間をかけて問題を解くような取り組みではなく、公式や定理を丸暗記し、いかに早く多くの問題を解くかに重点を置いているため。
    ただし、これは間違いではない。
    学校とは社会にでる前の機関、社会に順応しやすく育てる機関なので、今のような数学の学習方法で身につく「従順さ」「忍耐力」は、社会に出た時に役に立つはずだから。
    MIU問題などおもしろい箇所も多いけど、全体的には難解なイメージ。

  • [ 内容 ]
    数学的センスは誰のなかにもある!
    学校教育の落とし穴から抜けるための、まったくユニークな伝授法。

    [ 目次 ]
    第1章 代数でのつまずき-規範としての数学(マイナス掛けるマイナスはなぜプラスなのか 負の数は商業取引の便法として普及した ほか)
    第2章 幾何でのつまずき-論証とRPG(何がこどもを幾何嫌いにするのか ギリシャ幾何学vs.バビロニア幾何学 ほか)
    第3章 解析学でのつまずき-関数と時間性(文章題との運命の出会い 関数こそ、この複雑な世界への入り口だ ほか)
    第4章 自然数でのつまずき-人はなぜ数がわかるのか(幼児は数を何だと思っているか 「次」を使って数をとらえる派 ほか)
    第5章 数と無限の深淵-デデキントとフォン・ノイマンの自然数(「自然数」は数学者にも難しい ラッセルの批判 ほか)

    [ POP ]


    [ おすすめ度 ]

    ☆☆☆☆☆☆☆ おすすめ度
    ☆☆☆☆☆☆☆ 文章
    ☆☆☆☆☆☆☆ ストーリー
    ☆☆☆☆☆☆☆ メッセージ性
    ☆☆☆☆☆☆☆ 冒険性
    ☆☆☆☆☆☆☆ 読後の個人的な満足度
    共感度(空振り三振・一部・参った!)
    読書の速度(時間がかかった・普通・一気に読んだ)

    [ 関連図書 ]


    [ 参考となる書評 ]

  • 数学をわかる。

    塾で数学を教えていた経験に基づいて、思い切り噛み砕いて数学を説明している本。
    実例を挙げて、抽象から具体へと変換する事でイメージが掴みやすくなっている。
    導関数など”そうやって算出するもの”としか覚えていなかったが、直近するeという考え方は⊿を使って導関数を導いた微分の最初を思い出した。
    学習時は問題を解く事に一生懸命で勿体無かったな、と今なら(だから?)言える一言。

    自分メモ
    ・(負の数)×(負の数)=(正の数)は時間の逆戻り
    ・定理は公理を使って証明される
    ・不完全性定理:公理系の内部ではその命題を証明する事もその否定を証明する事も出来ない
    ・「全体が部分より大きい」という原理は有限集合にのみ成り立つ事で、無限集合では必ずしも成り立つとは限らない、と考えればいい

    本書の内容は良かったのだが、あとがきが蛇足に感じられて読後感はイマイチ。

  • <本書まえがきより>
    この本は、こどもたちと数学のあいだがらのことを書いた本だ。
    でも、「どうやったらこどもたちに上手に数学を教えられるか」ということを書いた本ではない。どちらかというと、
    「どうやったらこどもたちから数学を学ぶことができるか」、それを書いた本である。



    こどもたちから学ぶっていう考え方がいいな!!
    って思います
    数学でつまずいたことのない人っておらんと思う。

    なぜつまずくのか、どこでつまずくのかってことは
    自分が学生だった頃に知りたかったことで
    もう少し早くこういった本に出会いたかった・・・


    例えば
    負の数を理解するには、負の数がどう生まれてきたのかを知ることがよさそう。
    歴史的に、負の数は商業的な要請から発明されたそうなので、
    商業取引「負の数=借金」という例を用いることがいいってことだが、

    ホンマにそう思います

  • 大の数学嫌いが、やんわり嫌いになりました。

  • レビューは後ほど。

    数学が苦手だ!という予備校生や専門学校生の疑問に答えようと購入。
    もう少し自分も勉強しないといけないと痛感。

  • これから読みたい部下育成の本

  • 2008/3/4 アシーネダイエー甲南店にて購入。週刊文春のブックコーナーで勧められていたので。
    2009/3/27〜4/1
    職場から帰宅途中の電車内で読了。
    数学とは何か、ということを過去に塾講師をしていた経験上出あった例をとっかかりに数学ならではの思考法等の解説をしていく。代数学、幾何、解析学、自然数、集合、無限などが題材。昔は結構数学関係の本を読んだがこの本は久しぶりに読む関連書。なかなか新鮮であった。ただ、最初は題名通りの本であったが、途中から純然たる数学書のようになってしまったのは、?という感じ。

  • 公理系の話や、無限論など面白いトピックが満載。
    難解の部分があっても読破すべき良書!

  • 教える都合上、分かりにくい点があるのが分かってよかった。

  • 「なぜ、マイナス掛けるマイナスはプラスになるのか?」……それが(多少)理解できただけでも、あ〜よかった。最終章の集合で、ぼくは「つまずいてしまった」。

  • ちょっと難しいけど、限界までわかりやすく書いてあると思う。
    おもしろかった。
    あとがきでしびれたw


    ”それは、人間がものを考え、ものを考えることを考え、ものを考えることを考えることを考える、そういうことができるからなのだ。”

全31件中 1 - 25件を表示

数学でつまずくのはなぜか (講談社現代新書)を本棚に「いま読んでる」で登録しているひと

数学でつまずくのはなぜか (講談社現代新書)の作品紹介

数学的センスは誰のなかにもある!学校教育の落とし穴から抜けるための、まったくユニークな伝授法。

数学でつまずくのはなぜか (講談社現代新書)はこんな本です

数学でつまずくのはなぜか (講談社現代新書)のKindle版

ツイートする