物語 数学の歴史―正しさへの挑戦 (中公新書)

  • 139人登録
  • 3.74評価
    • (5)
    • (18)
    • (10)
    • (2)
    • (0)
  • 9レビュー
著者 : 加藤文元
  • 中央公論新社 (2009年6月1日発売)
  • Amazon.co.jp ・本 (327ページ)
  • / ISBN・EAN: 9784121020079

物語 数学の歴史―正しさへの挑戦 (中公新書)の感想・レビュー・書評

  • 古代中国やメソポタミア、ギリシャの高度な文化から始まり、フェルマーの最終定理や現代の集合論に至るまでの、数学の「思想的な」歴史をたどる壮大な物語。数とは何か、数学する(数学を数学的に考える)とはどういうことかを、深く深く考えさせられる本です。
    読んでいて最初にぶつかるのが、そもそも数とは何かという、基本的でありながら容易に答えを出せない問いです。海外ではどうか知りませんが、日本語の「数」は音訓2通りの読みによって、数字や具象物に付随する計算などでは「かず」、抽象的に数学する場合には「すう」と読む。と、そんなことを、確か中学の数学で習った気がします。茲で問題になるのは、人間にとって数はいったいいつから「すう」たる存在と成りえたか、ということでしょう。個人の発達では、「すう」のような概念を扱えるのは、形式的操作という認知処理を行えるようになる10歳以降と思われます。個人がその際に体験するコペルニクス的な大変化を考えるとき、歴史の中で人間の思考が具象を離れるのは、とても重大な事件だったように思えるのです。
    現在世界を席巻している西洋数学が、古代ギリシャの数学を起源としているということは周知のことですが、筆者は本書で、そのために数学自身が抱えることになった根本的矛盾を何度も指摘しています。それは代数と幾何との間にある、計算することと図を描くこと、もっと言えば、ルーティン化された解決法と直感による解決という2つの間にある齟齬にほかなりません。私たちは教育課程で数学を習う中で、数によって図を表し、図から数を返すという行為を当たり前のことだと考えてしまいがちです。しかし、そこには凡人では分からないような大問題が隠れているようです(数と図との関係ですら、中学生には理解しづらいことだというのに!)。図という連続と数という離散、あるいは、線という連続と点という離散。心理学領域での「スペクトラム仮説」を巡る議論をはじめとして、自然科学的アプローチでは必ず問題になるこの2つの捉え方は、西洋的、あるいはギリシャ的なものの考え方に孕む宿題を、今の私たちに残しているのかもしれません。
    本書は初心者向けに書かれたものかと思いきや、要所要所でかなり高度な数学理論が紹介されています。それは限りなく平易に記述されていますが、残念ながら私は、筆者がもっとも取り上げたかったというリーマンの業績を、あまり理解することができませんでした。1+2+3+4+…と、自然数を「無限に」足した解がなぜかマイナスになるという定理でつまずいているようでは、まだまだ数学を理解する道は遠いということでしょうか。

    (2009年7月入手・11月読了)

  • むずかった。じっくり読む系で時間かかる。なので速読。

  • 2009年刊行。古代から現代までの数学の史的展開を簡明に解説。この種の本は類書も多いところであるが、数学の議論の発展に及ぼした影響を検討する上で、西洋哲学と全体的美を重視するギリシャ的美的感性とを重視する点は興味深い。

  •  「古代ギリシャ世界から始まり、中世アラビア世界を経由して、その後ヨーロッパ世界に流入」(p.i)する「西洋数学」の流れ、そして「古代中国に起源を発し、近世以降の日本に和算という独特の数学の伝統をもたらした」(同)「東洋数学」の流れについて概説し、その2つが統合されていきつつある「現代の数学」について述べられている。
     数学の門外漢が読むと、ほとんど理解不能な部分もあったが、そのエッセンスというか、ある枠組みが取っ払われてもう1つの枠組みが構築されていく様子が、まるでミステリーのどんでん返しのような感じがして、面白いと思った。
     まず数学には「『計算する』という数学の形式的側面と、図形を『見る』という直観的側面」(pp.15-6)の2つの側面があって、いわば縦糸と横糸のような2本がどう織り合わされていくのか、といった面があるということに気付かされた。これに符号するように、本書のサブタイトルである「正しさへの挑戦」に示されている「正しさ」というのが「知性的な精神活動であるという側面と、感性による受け入れという側面」(p.34)があり、長い引用になってしまうが、「数学するという行為においては、直観の重要性はいくら強調しても強調しすぎることはない。数学の進化とは、正しさの直観能力の進化である。それは人間の悟性が、より抽象的な世界の中に新たな正しさを見出すことである。そして数学における抽象化とは、対象やパターンに対する意図的な健忘を通して、人間の感性を洗練することに他ならない。」(pp.34-5)という部分は、おそらく数学を研究する上で心得ておくべき大事な部分、というか数学の持つ「美しさ」を発見する上で必要な認識なんだろうなと思った。数学に限らずすべての自然科学、あるいはそれをモデルとした諸分野で、こういった感性を研ぎ澄ます必要があるのではないかと思った。逆に緻密な演繹的作業が行われていても、感覚的に違うと思うような理論は、全人類的な学問にはならないんじゃないかとも思った。
     議論からは逸れてしまうが、なぜ古代ギリシャ人が色んなことを思いついたのか、というあたりの説明が面白い(pp.76-8)。要するにヒマだったから、とか計算が苦手だったから、と説明されている。ヒマな人たちがいないと哲学に帰結されるような学問は発展しないのかな、と思ってみたり。
     具体的な数学の話としては、やっぱり微分の話が面白い。微分というと、単にグラフ書いて接線の式を求めるとか、そういう作業的なものという意識がおれには強いが、要するに「運動の瞬間速度を求めることと、函数のグラフの接線を求めることは、同じ数学的現象を二通りに言い表したものに過ぎない。どちらも『変化率』、つまり変化の割合が問題となっているからだ。」(p.129)のあたりが、面白い。どんな曲線もある1点から極めて微細な距離を持った点までは直線なんじゃないか、という。そもそも点という概念の難しさや、極めて微細な、というあたりの、限りなくゼロ、無限、という概念が数学の中の大きなトピックになっているように思えた。
     また、やっぱり非ユークリッド幾何学の発見、というのはよく分からないけどすごいと思った。平行線は交わる、という考えを積極的に認めようとする理論なんて、凡人には思いが至らない。
     というように、よくは分からないけど、数学の発展の歴史を概観しながら、数学とはどういうことをどういう風に考えるものなのかということをそれなりに知ることはできる有益な本だった。よく言うことではあるけど、こういうことを理解していれば高校の数学はもっと面白いと思ったかもしれない、という月並みな感想を持った。(15/01/2-)

  • 途中から分からない専門用語が多くなり、終始置いておかれないように食いついていくのがやっとだったが、へー、そういうことだったのかという部分は多々あった。

    ・ユークリッドの互除法
    ・中国と日本の数学
    ・ピタゴラスの三つ組
    ・ニュートンとライプニッツの微分積分のアプローチの違い
    ・不足角、ユークリッドの第5公準
    ・プラトンの三つ組と正多面体
    ・ガロア理論と対称性と表現論
    ・射影幾何学
    ・レム二スケート曲線は楕円関数の一つ
    ・素数の性質の二段階
    ・理想数からイデアルヘ

  • 数学史をある程度テーマ毎にまとめて流れを読ませてくれる。
    近代ぐらいまでは何となくイメージできるのだが、リーマンさんが出てくると難解。ここを転換点として、厚く書いているのだがついていけない。
    リーマンさん入門書みたいなの探して読んでみよう。

  • 19世紀以降の数学については理論の名前だけ挙げて「難しいから詳細を知りたい人は自分で調べてね」というスタンス。
    西洋数学と東洋数学という対比もお題目として挙げただけで尻切れトンボ。
    現代数学につながる大まかな流れはわかるにはわかったが構成については疑問を感じずにいられなかった。

  • [ 内容 ]
    古代バビロニアで粘土板に二次方程式の解法が刻まれてから四千年、多くの人々の情熱と天才、努力と葛藤によって、人類は壮大な数学の世界を見出した。
    通約不可能性、円周率、微積分、非ユークリッド幾何、集合論―それぞれの発見やパラダイムシフトは、数学史全体の中でどのような意味を持ち、どのような発展をもたらしたのか。
    歴史の大きなうねりを一望しつつ、和算の成果や19世紀以降の展開についても充実させた数学史決定版。

    [ 目次 ]
    第1章 数学の芽
    第2章 数学の始まり
    第3章 西洋数学らしさ
    第4章 古代から中世へ
    第5章 カメに追いつくとき
    第6章 計算する魂
    第7章 曲がった彫刻
    第8章 見えない対称性
    第9章 形に対する悦び
    第10章 感性の統合
    第11章 フェルマーの最終定理
    第12章 空間と構造

    [ POP ]


    [ おすすめ度 ]

    ☆☆☆☆☆☆☆ おすすめ度
    ☆☆☆☆☆☆☆ 文章
    ☆☆☆☆☆☆☆ ストーリー
    ☆☆☆☆☆☆☆ メッセージ性
    ☆☆☆☆☆☆☆ 冒険性
    ☆☆☆☆☆☆☆ 読後の個人的な満足度
    共感度(空振り三振・一部・参った!)
    読書の速度(時間がかかった・普通・一気に読んだ)

    [ 関連図書 ]


    [ 参考となる書評 ]

  • 東洋数学についても論じられているのが新鮮。著者が言うように確かにガロアは群論とか、フィボナッチは数列、とか薄ぼんやりと西洋数学者については知っているけど関孝和については何も知らないな…。和算の本も読もうかなぁ。

全9件中 1 - 9件を表示

物語 数学の歴史―正しさへの挑戦 (中公新書)を本棚に「いま読んでる」で登録しているひと

物語 数学の歴史―正しさへの挑戦 (中公新書)はこんな本です

物語 数学の歴史―正しさへの挑戦 (中公新書)のKindle版

ツイートする