数学という学問〈2〉概念を探る (ちくま学芸文庫)

  • 37人登録
  • 3.67評価
    • (0)
    • (2)
    • (1)
    • (0)
    • (0)
  • 3レビュー
著者 : 志賀浩二
  • 筑摩書房 (2012年5月1日発売)
  • Amazon.co.jp ・本 (267ページ)
  • / ISBN・EAN: 9784480094223

数学という学問〈2〉概念を探る (ちくま学芸文庫)の感想・レビュー・書評

並び替え:

表示形式:

表示件数:

  • 本巻では主に虚数を中心として関数概念、特に積分概念の発展を述べている。初めは病的なものとして捉えられていた虚数が、複素数として捉えられ、また複素平面として定式化される。そして積分概念は実直線上の関数から、複素平面上の関数を含むように拡張され、複素解析の分野が拓かれる。また、本巻ではガウスとフーリエの生涯をたどりつつ、関数のフーリエ級数による表現を扱う。さらに、非ユークリッド幾何を紹介しつつ、面積を測るということに新しい視点をもたらしたとしてジョルダン測度を取り上げている。

    虚数といえば複素平面の一つの次元として実数とは異なるものとして捉えていた自分には、iのi乗が111.3178という値になるという話にまず面食らった(p.42-44)。これはオイラーのe^(iθ)=cosθ+isinθから、e^(-π/2)=i^iという式が導けることによる。また同様にして1のπ乗がcos(2nπ^2)+isin(2nπ^2)として表現できて異なるnに対して別の値となるので、1^πが無限に多くの複素数の値を取ることになる。こうして、虚数は実数の世界にも意外な形で現れる。

    実数をx軸に、虚数をy軸にする複素平面の表現は虚数が数学に正当に取り上げられるのに貢献した。これは1831年のガウスに帰され、複素平面はガウス平面とも呼ばれる。しかしその先駆としては1802年のアルガンとビュエがいて、著者はさらに1797年のウェッセルという人の着想を取り上げている(ちなみにガウスは1796年、19歳の時にすでに複素平面のアイデアを得ていたが、明確な発表は1831年となった)。このウェッセルは数学者というより測量技師であって、実直線上の1から90度回転を二度行えば-1となる、ゆえにこの回転をiで表せば1×i^2=-1、といったアイデアを示している。ウェッセルについてはほとんど知られていないのであろう、巻末に当該の論文が和訳されている。

    複素平面という捉え方を受けたコーシーの複素関数の積分の話が面白かった。ここでは正則関数(定義域の各点で微分可能な関数)に対するコーシーの積分公式を中心に、リーマン面のアイデアまでが書かれている。積分は複素平面に移ることによって、実数の時のような「面積」のような比喩を失う。また、正則関数は各点で何回でも微分可能であって(実数では1回微分可能であってもn回微分可能であるとは限らない)、しかもその高階導関数が元の関数の積分を用いて表される。高階導関数は実数の範囲では、何度も微分を繰り返していくことによって導かれるが、複素数では何と積分で表されることになる。

    「微分は、関数の局所的な姿を表すものではなく、関数の大域的な様相の中で、各点のまわりの変化の深みを積分を通して表すことになった。正則関数の世界では時間も量も消え、無限小の暗い影も完全に消えてしまったのである。」(p.91)
    「局所的な微分のはたらきは、大域的な積分によって、関数そのもののもつ1つの姿となった。」(p.163)

    続くフーリエ展開の話はガウスとフーリエの伝記的な話題が多く、その数学的含意としてはいまひとつ。その後のジョルダン測度と「面積」という概念の抽象的捉え直しについては面白く読んだ。最後にはギリシャ、アラビア、中世ヨーロッパの数学史的展開の話があるのだが、これは19世紀数学の展開をメインとしている本書にはちょっと位置づけがよく分からない。

  • 19世紀ヨーロッパ数学の流れ。全体を見渡すことができて良い。

  • 数学とういう学問Ⅰに引き続き、更に概念が深みや広がりをえていく姿が新鮮に記述されている。複素解析については簡単な定理の証明や、歴史的な論文が付録に収録されていて非常に興味深い内容です。

    目次
    3部 数概念の広がり―実数から複素数へ
     第1章 負の数、虚数
     第2章 虚数から複素数へ
     第3章 複素数上の解析学)
    第4部 概念の深みと広がり―19世紀前半の数学
     第4章 純粋数学と応用数学
     第5章 関数という概念―微分を通して
     第6章 関数という概念―積分を通して
    第5部 過渡期―19世紀後半の数学
     第7章 既成概念からの飛翔
     第8章 積分概念の深まり)
    第6部 数学と文化の流れ
     第1章 文化の根源から
     第10章 数学と社会
    付録:ウェッセル「方向の解析的表現について」 第1章

全3件中 1 - 3件を表示

志賀浩二の作品

数学という学問〈2〉概念を探る (ちくま学芸文庫)を本棚に「いま読んでる」で登録しているひと

数学という学問〈2〉概念を探る (ちくま学芸文庫)を本棚に「積読」で登録しているひと

数学という学問〈2〉概念を探る (ちくま学芸文庫)はこんな本です

ツイートする