ピタゴラスの定理―4000年の歴史

著者 : E.マオール
制作 : Eli Maor  伊理 由美 
  • 岩波書店 (2008年2月27日発売)
3.56
  • (1)
  • (4)
  • (3)
  • (1)
  • (0)
  • 29人登録
  • 6レビュー
  • Amazon.co.jp ・本 (353ページ)
  • / ISBN・EAN: 9784000058780

作品紹介

ピタゴラスの定理ほど重要で誰にもよく知られた数学の定理はない。その定理を窓にして、古代バビロニアから今日まで四千年に及ぶ数学の発展と文化への影響を生きいきと描く。四百種を超える定理の証明法、ワイルズによるフェルマーの最終定理の証明、バビロニア人たちの驚くべき数学の水準、ピタゴラスやアルキメデスのこと、代数の体系化、座標の導入、微積分学の創始、微分幾何、非ユークリッド幾何学、相対性理論、音楽と数学の類似性、…。数学とその歴史に関心のある人には、たまらなく楽しい、話題満載の数学歴史物語。

ピタゴラスの定理―4000年の歴史の感想・レビュー・書評

並び替え:

表示形式:

表示件数:

  • a^2+b^2=c^2というシンプルな定理にまつわる色んなお話し。
    エジプト人が3,4,5の三角形を用いて直角を作っていた、という「証拠はない」というのが地味に衝撃的だった。

    証明方法は400くらいはあるらしい。
    これは気に入った。
    https://twitter.com/micca16849/status/237132554354962432
    (どんな問題でもできるだけ絵を書いて考えようという癖がついているからかもしれない。逆に、証明の文章を追うのには骨が折れた。)

  • 導入部は易しいが最終的には大学1年程度の数学のレベルに達するので、ハードルは低くない。
    それぞれの証明を吟味せずに果実のみ取り出して読むのであれば歴史のまとめとして気楽に読める。
    数式アレルギーの人にはおすすめできない。

  • 図書館利用

  • 世界一有名な定理なのにオイラーなどの定理の影に潜んでるそんな地味な定理

    でもすげーんだ。
    内容は本当にワクワクしながら読んでました

  • ピタゴラスといえば、
    [定理]
     直角三角形の3辺の長さをそれぞれa,b,c(cは直角角の対辺)とするとa^2 + b^2 = c^2
    で有名な古代数学者。本書はこのもっとも有名な定理を取り巻く事実を解説する。
     前半では、この定理を誰が一番先に発見したのか。あれほどのピラミッドを作ったエジプト人がこの定理を知らなかったとは信じられないし(エジプトからこの定理存在を証明する遺物は出土していないのだが)、中国ではピタゴラスとは別個にこの定理は証明されていた。さらには中東では間違いなくピタゴラス以前にこの定理が使用されていた。となるとピタゴラスの先有権は非常に疑わしくなる。
     後半は、数学や物理の定理、法則のいたるところに顔を出すこの定理の真の意味に肉薄する。例えば、N次元ユークリッドの距離や特殊相対論の時空の定義。かの有名なフェルマーの大定理の一部。さらにいえば、リーマン幾何学の曲面凹凸の定義や、ヒルベルト空間の距離定義。そこから発展した一般相対論の時空などなど。確かに何の変哲もないこの定義が、このような数学や物理にこれほどまでに深く組み込まれているとは、今更ながらに驚いた。

  •  『不思議な数eの物語』と同じ著者による、“最もよく知られた”定理の物語。直角三角形の斜辺の長さの二乗は、他の二辺の長さの二乗の和に等しい──習ったのは中学二年生だったかな?

     ピタゴラスの定理の解説だけで300ページ以上書くことがあるのか不思議でしたが、読んでみるとなかなかよくできた内容でした。この定理にまつわる歴史とエピソード、様々な証明方法と派生定理など多岐にわたる物語が並び、最後は相対性理論や宇宙人へのメッセージまで登場しました。

     たったひとつの定理からよくここまで膨らませられるものだと感心します。途中にある多くの証明も丁寧に解説されていますので、さほど数学が得意じゃない人でも追いかけられるでしょう。とはいえ、数学が嫌いな人が手を出したくなるタイトルではありませんが。

全6件中 1 - 6件を表示

E.マオールの作品

この本を読んでいる人は、こんな本も本棚に登録しています。

有効な左矢印 無効な左矢印
M.E. ポータ...
ウィリアム・ノエ...
有効な右矢印 無効な右矢印

ピタゴラスの定理―4000年の歴史はこんな本です

ツイートする