Python機械学習プログラミング 達人データサイエンティストによる理論と実践 (impress top gear)

制作 : 株式会社クイープ  福島真太朗 
  • インプレス
4.27
  • (9)
  • (10)
  • (3)
  • (0)
  • (0)
本棚登録 : 227
レビュー : 9
  • Amazon.co.jp ・本 (456ページ)
  • / ISBN・EAN: 9784844380603

作品紹介・あらすじ

機械学習とは、データから学習した結果をもとに、新たなデータに対して判定や予測を行うことです。すでにさまざまな機械学習の方法が開発されています。本書では、そうした方法について背景にある理論や特徴を解説した上で、Pythonプログラミングによる実装法を説明していきます。初期の機械学習アルゴリズムから取り上げ、終盤ではディープラーニングについても見ていきます。機械学習の理論と実践についてバランスよく解説してあり、AIプログラミングの第一歩を踏み出すための格好の一冊です。

感想・レビュー・書評

並び替え
表示形式
表示件数
  • 2017ソフトウェア情報学部貸出ランキング第10位
    <図書館の所在、貸出状況はこちらから確認できます>
    https://libipu.iwate-pu.ac.jp/mylimedio/search/book.do?target=local&bibid=319271

  • 第1章 「データから学習する能力」をコンピュータに与える
     機械学習の全般的な説明、教師あり学習の分類・教師あり学習の回帰・教師なし学習・クラスタリング・ニューラルネットワークについて説明がある。
     強化学習についての説明はない。
    第2章 分類問題
     irisデータセットで分類問題を解いていく。
     パーセプトロンモデルの活性化関数は単位ステップ関数(ヘビサイド関数)、学習規則は教師データと出力値との誤差を重みに更新する。
     目的関数に誤差平方和を使用し、勾配降下法で解を求める方法が実装されている
    第3章 分類問題 scikit-learnの活用
     scikit-learnでのdatasetsの紹介
     パーセプトロンをscikit-learnで実装している。データの標準化の手法も説明している。
     ロジスティック回帰による分類問題の解、今までの分類は分類できた、できなかったの出力であったがどの程度分類できたか確率で表現できるのが新しい。
     線形分離可能問題にしか適用できないのは今までと同じ。
     サポートベクトルマシンによる分類
     非線形分類問題にも対応可能な手法(カーネルトリック)
     決定木学習 フローチャートを自動的に作ってくれる学習方法?
     複数の決定木を組み合せたランダムフォレストは過学習に強い。
     k近傍法(KNN)教師なし学習のk-meansに似ている。
    第4章 データ前処理
     pandasをつかった欠損値対応が紹介されている。
     カテゴリーデータをscikit-learn内で使用するため返還する方法としてmap関数の使用、scikit-learn内のLabelEncoderクラスの使用を推奨している。
     名義特徴量のone-hotエンコーダ
     訓練データ、テストデータの分割に使用するtrain_test_split関数の紹介
     スケーリングの方法として標準化と正規化の特徴
     過学習への対応としてL1,L2正規化の解説
    第5章 次元削減でデータを圧縮する
     主成分分析による次元削減、線形判別分析による次元削減
    第6章 モデルの評価とハイパーパラメータのチューニングのベストプラクティス
     モデルによって分類問題を解いていくがどのモデルが良いのか評価する手法を解説する
     ホールドアウト法:一番簡単で基本
     k分割交差検証:データセットをk個に分割して与える
     学習曲線(訓練データを使用したときの精度)と検証曲線(テストデータを使用したときの精度)
     グリッドサーチによるもっともいハイパーパラメータ決め方
    第7章 アンサンブル学習
     複数の学習器(分類器)を組み合わせて最も良い結果を出すランダムフォレストに考え方が似ている。
    第8章 機械学習の適用 感情分析
     映画レビューをで学習して文書からネガテブな文書なのかポジテブな文書なのかを分類を学習する
    第9章 機械学習の適用2 Webアプリケーション
     前の映画レビュー分類器をWebアプリとして実装する
    第10章 回帰分析
     線形回帰
     ロバスト回帰
     多項式回帰
     ランダムフォレスト回帰
    第11章 クラスタ分析
     k-means法
     階層木
    第12章 ニューラルネットワーク
     手書きの数字を分類(MNISTデータセット)
     畳み込みニューラルネットワーク(CNN)
     リカレントニューラルネットワーク(RNN)
    第13章 ニューラルネットワーク Theanoライブラリによりトレーニング
     Kerasを使ったトレーニングの実装

  • これは良書!

  • 【電子ブックへのリンク先】

    https://elib.maruzen.co.jp/elib/html/BookDetail/Id/3000042109

    ※学外からの学認経由での利用方法
    https://www.lib.hokudai.ac.jp/uploads/2017/07/gakunin_maruzen_ebook.pdf

  • まぁまぁ読んでる。
    でも結局、Rでやっちゃう。
    慣れてるから。

  • 請求記号 007.1/R 17

  • 48

全9件中 1 - 9件を表示

Python機械学習プログラミング 達人データサイエンティストによる理論と実践 (impress top gear)のその他の作品

Sebastian Raschkaの作品

この本を読んでいる人は、こんな本も本棚に登録しています。

有効な左矢印 無効な左矢印
デール カーネギ...
Bill Lub...
有効な右矢印 無効な右矢印

Python機械学習プログラミング 達人データサイエンティストによる理論と実践 (impress top gear)を本棚に登録しているひと

ツイートする